Lecture 9 - February 7

Reactive System: Bridge Controller

Announcements

- Lab2 released
- WrittenTest1 coming

Reactive System: Bridge Controller

Correct by Construction State Space Req. Doc.

Is it necessaril to also par Mz refines Mo? Ly No. Refinement relations are transition.

(CZ) State spare allows: {C=100, L=200, State Space of a Model Accounts = {"akin", -2055" Is this on aritant?

TANATICAL VIDE **Definition**: The state space of a model is the set of <u>all</u> possible valuations of its declared constants and variables, subject to declared constraints.

Say an initial model of a bank system with two <u>constants</u> and a <u>variable</u>: $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land \underline{accounts} \in String \nrightarrow \mathbb{Z}$ /* typing constraint */ $\forall id \bullet id \in dom(accounts) \Rightarrow -c \le accounts(id) \le L$ /* desired property */

Q1. Given some example configurations of this initial model's state space.

 $\int (C_{1}) = 100, Z = 200, \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=2}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), ('mark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), (imark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), (imark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), (imark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), (imark', 199) \frac{3}{2} \sum_{i=100, i=200}^{i=100, i=200} \frac{1}{2} (alcn', 150), (imark', 199) \frac{1}{2} (alcn', 150), (imark', 190) \frac{1}{2} (alcn', 150), (imark', 190), (imark', 190), (imark', 190) \frac{$

I ATTOM: ASSUMP to be two (used to restrat the state space) I (C2) I thousen/TANANTANT . need to be shown to hold in all poss-tole states

Bridge Controller:

Requirements Document

ENV1	The system is equipped with two traffic lights with two colors: green and red.	
		the parts
ENV2	The traffic lights control the entrance to the bridge at both ends of it.	Should be tweed!
		Le ale Mare 12-a
ENV3	Cars are not supposed to pass on a red traffic light, only on a green one.	
		WITHOUT INIS 2
ENV4	The system is equipped with four sensors with two states: on or off.	verification veriles distinction
		I C I C A KIMAN
ENV5	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.	wald be unvealistic. Z
		encode this 67
REQ1	The system is controlling cars on a bridge connecting the mainland to an island.	
		Pounting # of row
BEO2	The number of cars on bridge and island is limited	
TIEGE	The humber of ours of bridge and bland is infliced.	
		Entermy or Exiting ML.
REQ3	The bridge is one-way or the other, not both at the same time.	

.

Mainland

Bridge

Island

Reactive System: Bridge Controller

Initial Model: State and Events

Bridge Controller: Abstraction in the Initial Model

Bridge Controller: State Space of the Initial Model

Bridge Controller: State Transitions of the Initial Model

